
Managing a grid, Part 4: Day-to-day tasks for a grid 
administrator
Level: Intermediate

David Medinets (david@affy.com), Freelance Writer, Consultant 
David A. Cafaro (dac38@georgetown.edu), Computational Researcher, Consultant

23 Jan 2007

Managing a grid involves many elements, from the network and hardware you use to 
deploy your grid to the security, job management, and job metrics and statistics generated 
during the execution of your grid, enabling you to more effectively manage the work. In 
this four-part "Managing a grid" series, we look at key elements of the grid management 
process, such as identifying hardware and network fundamentals that affect your grid 
process, and how to use metrics information as a scheduling, prediction, and expansion tool. 
In this final article, we cover the day-to-day management of a grid.

Introduction

If you've been following along with this series, you should have a good understanding of what's involved 
in designing, deploying, and monitoring a grid infrastructure. We've looked at what to consider when 
looking at network and grid hardware and software and how you must look at what services you will be 
providing and in what environment you will be operating. We've looked at what should be considered 
during the design phase in implementing security to provide a controlled means of managing who and 
what has access to your grid resources. And we have looked at what you should be monitoring during the 
operation of your grid to help you maintain the operational status of your resources.

Part 4 will take what we have learned and present what a typical grid administrator's work schedule might 
look like. We'll look at daily tasks, issue handling, job maintenance, and planning.

Daily tasks

The day-to-day operations of a grid administrator are not much different from that of any good systems 
administrator, as long as you did your homework. A well-designed grid infrastructure will generally 
remain stable. The only issues usually result from hardware failures, maintenance updates, and user error 
(either faulty applications or simple mistakes). Here are some daily issues:

Logs and monitoring -- One of the first and most important things you will do during the day is 
scan your logs and look at your metrics reports. You may use software to help you scan these items 
and highlight keywords and issues to make it easier to spot issues. You'll be looking for anything 
that isn't within the norm, such as errors and warnings in log files and unusual activity in your 
metrics or lack of activity, which is more likely. The following screenshot shows what a log-based 
software error might look like.

Figure 1. Error on authentication services



 

Education and alerts -- It's always important to stay current with the technology and tools you're 
using. It's recommended that you join mailing lists and other forms of communication to get alerts 
to new developments in the software you're using (see Resources). Often, by the time you notice 
something wrong in the applications you're using, someone else has noticed the same problem and 
has started a discussion on it. It may even have been fixed or a workaround discovered. These lists 
can also alert you to future problems and help you plan for them before they become a real issue. 
System maintenance -- Maintenance tasks will often be divided into online and offline tasks. 
Online tasks are usually simple things like deleting stale temporary files, adding or removing users, 
or any other task that doesn't interrupt running processes. Offline tasks generally consist of system 
upgrades that require notification to users that a given system cannot be used during a given time 
period. This should be scheduled during your normal maintenance windows if possible.
Scheduling job requests -- This depends if you are using an automated scheduler or manual 
scheduling system. With an automated scheduler, you may be checking that jobs are running and 
that new jobs are queuing. With manual scheduling, you need to consult your metrics and match 
job requests with available resources.
Planning -- If everything is going fairly smoothly, one big task you'll face is planning for 
expansion and upgrades. As with anything in the technology field, once something is used and 
deemed beneficial, there is a constant call for improvement.

Monitoring logs will often lead to working on issues that present themselves in the logs (system failures,
emergency maintenance, security responses). The same can be said of things you learn from mailing lists
and RSS feeds. System maintenance may include tasks such as recycling Java™ VMs, restarting hung
services such as HTTP, or simply dealing with new grid users. Depending upon the type of jobs and your
grid infrastructure, scheduling jobs will most likely be one of the smaller chunks of time out of your day.
The following sections look at some of these related tasks in more detail.

System failure and recovery

From time to time, you'll look through your logs or check your metrics or e-mail and discover a system 
that has failed. This can be a minor annoyance or a major issue, depending on which system has failed. 
Core components such as nonredundant routers and switches, master nodes on computing resources, 
storage, and authentication systems can bring grid resources to a screeching halt. When one of these key 
components fails, you will likely be forced to perform emergency maintenance, taking your resources 
offline. If you were able to build some redundancy into your architecture, you may not have to take the 
resources offline for long periods of time or at all. In cases of compute nodes or storage elements failing, 
it will most likely not bring down all of your resources and can sometimes be dealt with best during 
regularly scheduled maintenance windows or when usage is light. No hardware failure should be left for 



long because these resources are part of the redundancy built into any grid system. There are also 
software failures that need to be addressed quickly. Software failures tend to take an entire resource 
offline.

Master node failures -- This is one type of failure that will bring your grid or resources to a 
standstill and will need to be addressed immediately. Since a master node generally controls all 
work being done on your grid, a loss of the master node cuts off all scheduling and workflow 
control. At this point, it's probably easiest to go ahead and bring down the rest of the affected grid 
while you repair or replace the master node. All compute and storage nodes need to resynchronize 
once the master node is back online, and this is often easier to do from a cold start. You can avoid 
some of these issues by having hot standby nodes ready to take the place of a failed master node. 
You may still have issues with some failed jobs, but new jobs can continue, and jobs that for some 
reason failed during the switchover can be rerun while the failed master node is rebuilt and 
restarted.
Authentication failures -- Though not as serious as a master node failure because it won't usually 
affect running jobs, it is serious in that no new jobs can be submitted and the results of completed 
jobs can't be retrieved. Most often, this doesn't involve taking down the entire grid or resources 
and can be dealt with immediately. However, new jobs probably won't start because they can't 
authenticate, which means they can't allocate resources. Again, backup or redundant authentication 
servers can reduce or eliminate downtime for new jobs.
Network equipment failures -- Generally speaking, network equipment failure occurs less often 
than other types of failures. When equipment failure does occur, it can often bring an entire grid to 
a stop unless enough redundancy is built in. If the network equipment links separate grids within 
your organization, it is usually not necessary to shut down each grid while the repair is taking 
place. They will simply resynchronize when the network recovers. If the network equipment 
provides backbone communications between grid nodes, it may be necessary to bring down the 
affected grid to allow for a clean restart once the repairs have been made.
Application and job failures -- These are the most common failures. They usually do not require 
bringing the grid offline, but they need to be addressed immediately before they affect other jobs 
running on your grid. Most often, the run logs from the jobs or applications will point to areas of 
interest and you can work with your software developers or application providers to diagnose the 
issue.
Grid node failures -- This is probably the least disruptive type of failure. Usually, if a master grid 
node detects a failed grid node, work can be reassigned and the failed node marked. At this point, 
it's a task of repairing the failed node. There are occasions where a grid node can fail yet still 
appear to be working to the master grid node. In these circumstances, you will need to look for 
long-running jobs taking longer than expected or producing results with errors. Again, this is not 
the usual issue, but something to be aware of.

Spotting trends and issues

As your grid gets used and becomes more popular and more productive, you are bound to notice that 
your resources have a finite limit. Luckily with grid systems, you don't really have to worry about that 
finite limit on your current grid as you can easily expand your grid by adding new resources. In some 
instances, it may just be a matter of modifying where and when jobs are scheduled. The most difficult 
task becomes keeping track of when and how much you need to expand or how to reschedule. This is 
where your metrics come into play. By analyzing long-term metrics, you can spot resource usage trends. 
You should look for which resource types are most popular and when they are most used.

When to redistribute work -- It's important to look at snapshots of overall load, as well as 
averages of your grid load. This may show your grid at 50-60 percent use, yet it may feel closer to 
100 percent. Often, you will notice "bursty" work that occurs regularly all at the same time. Your 



system may go unused evenings and weekends, or be heavily used for a week, then go dormant 
the next. Depending on your needs, you can work to better schedule your workloads to better take 
advantage of these downtimes. Before upgrading hardware, it's good to check and see that you are 
making the best use of current resources. Figure 2 shows an example of bursty work on the top-left 
graph. Such a system might benefit from better job scheduling.

Figure 2. Bursty work on a grid resource

 

When to plan for expansion -- In some cases, you see a trend toward a grid with constant 
75-percent utilization, or rescheduling is not an option because of the nature of the work. In these 
cases, you need to decide when an upgrade or expansion is needed. You want to avoid having 
your system reach 75-percent capacity usage. By looking at your metrics and taking into account 
your organization's future plans and implementation speed, you can plan to install upgrades and 
expansions when your system is reaching that mark. This gives you some slack in the case of 
unforeseen issues and rush work. It's important to plan well in advance by taking advantage of the 
vast amounts of metrics data your grid can produce for you. Figure 3 gives an example of a grid 
resources likely in need of an expansion or upgrade. Notice top-left graph that the system is nearly 
maxed in terms of usage.

Figure 3. Heavily loaded system



 

Updates and upgrades

The updating of a grid is vital, but you can do it in different ways. A complete shutdown/startup will take 
your grid offline, but will ensure that all machines are upgraded simultaneously. A phased update takes 
blocks of machines out of action and upgrades them. This approach may reduce the effectiveness of your 
grid, but doesn't take it out of action and is, therefore, more appealing in situations where a single update 
phase could mean shutting down the grid for days or weeks.

Scheduling -- Ideally, you want to schedule when you will have the smallest impact on your users. 
You need to be sure to take a couple of things into account, such as access to external assistance in 
case of unforeseen problems and extra time in case of work overruns. Though the least impact is 
often in the evening or on weekends, these are also the times when getting outside assistance can be 
difficult. It's usually easier and safer to schedule on a light-loaded work day by providing users 
with warning of the scheduled downtime. You should take into account the amount of disruption, 
the chances of unforeseen problems, and access to outside assistance if needed when deciding on 
when work should take place.
Full shutdown/update -- These are usually best done during low-use periods, as you will be taking 
your grid offline. It is also necessary to make sure all parties are aware well in advance. It will 
make it easier to perform the updates and upgrades as you will be able to verify each component as 
it comes back online. This often leads to the longest downtimes, so it should generally be done 



only during major hardware and software upgrades or because of serious security issues.
Staged/phases shutdown/update -- This is probably one of the favored ways of performing 
updates and upgrades. This allows you to take certain components down while leaving the rest up 
and running. This provides most of the benefits of a full shutdown without causing a complete loss 
of service. The downside is that it does not work as well for time-sensitive updates, such as security 
issues or critical software flaws that may threaten your entire grid infrastructure.
Live expansion -- Adding grid nodes or grid components can sometimes be done without the need 
for a shutdown of any type. Adding more compute elements or another grid storage system can be 
as simple as bringing the equipment online and updating the configurations on the other master 
grid nodes to alert them of the new resources.

With any upgrades or expansions, it's important to test and prepare well in advance. Scheduling should 
always include time to do tests with nonproduction equipment and to verify that operating procedures 
will work during the real event.

Testing and staging
Here's a quick overview of some techniques for providing testing and staging services so updates and 
changes to software can be handled and organized before being applied to a grid. Virtual machines are a 
great tool here, but even a small 3- or 4-node hardware setup can be useful.

Hardware testing grids -- One way to test is to create a small sample grid in your test lab. This can 
consist of a few samples of your deployed or planned-to-be-deployed equipment. This provides a 
great way to test your architectural design, as well as how different pieces of hardware will work 
together. It can also provide a good platform for software testing as it will most closely resemble 
your actual grid hardware. Disadvantages include expense, space, and software failures and system 
restores/images.
Virtual testing grids -- The use of virtualized servers and networks can provide a great 
environment for testing software for your grid before deployment. Many virtualization software 
packages provide easy access to saved system states, easy rollback of system images, and flexibility 
in dealing with multiple configurations. A primary disadvantage is that you may be limited in your 
networking design and performance testing. Figure 4 shows an example of a grid test environment 
running on a virtualized environment.

Figure 4. Virtual test grid



Share this...

Digg this story
Post to del.icio.us
Slashdot it!

 

Staging -- New equipment should be brought up and tested in a testing environment before being 
added to the live grid infrastructure. This can simply be turning the system up in place while 
having the network connection to the production grid unplugged. Make sure you are given a 
chance to see how the system behaves before it's in a position to interact with the rest of your grid. 
You can also test how it may interact with your production grid by testing it against your testing 
grid beforehand.

Summary

You should now have an excellent idea of what is involved in keeping a grid 
operating safely and smoothly. We conclude the "Managing a grid" series, 
having discussed:

System failure and recovery -- Which surfaces important issues to think 
about before a widespread failure happens to you.
Trends and issues -- Every system has peaks and valleys. Know the 
trends so you can prepare your grid.
Updates and upgrades -- As you spot trends, you'll be able to update/upgrade your grid 
accordingly to prepare for the worst and to ensure that you stay below the 75-percent utilization 
mark.
Testing and staging -- It's wise to test your grid in a sandbox-like environment that doesn't damage 



sensitive data. If it fails, at least your customers won't be affected. You can use your skills to fix 
and update the grid, and bring it live when it's ready.

Resources
Learn

The TeraGrid is a National Science Foundation (NSF)-funded project to provide an integrated 
computational and data infrastructure for research scientists within the United States. Read a 
three-part series titled "Lessons learned from the TeraGrid."

Read "Building a unified grid," a four-part series of articles describing the grid-based system 
architecture developed in the Telescience Project at the National Center for Microscopy and 
Imaging Research.

For documents that provide information and specifications to developers and others involved with 
grid computing, check out the Open Grid Forum (OGF) Document Series.

The screenshots in this tutorial were provided by Advanced Research Computing (ARC) at 
Georgetown University.

The Globus Alliance is a community of organizations and individuals developing fundamental 
technologies behind the grid, which lets people share computing power, databases, instruments, 
and other online tools securely across corporate, institutional, and geographic boundaries without 
sacrificing local autonomy.

The Gridbus project is engaged in the design and development of open source cluster and grid 
middleware technologies for service-oriented computing. Gridbus emphasizes the end-to-end 
quality of services driven by computational economy at various levels -- clusters, peer-to-peer 
networks, and the grid -- for the management of distributed computational, data, and application 
services.

Check out GridsWatch for grid-related news, links to articles and tutorials, interviews, and training.

International Science Grid This Week provides information and news about people and projects 
involved in grid computing and the science that relies on them. It's supported by the U.S. 
Department of Energy, National Science Foundation and the European Commission's Information 
Society.

The Globus Consortium is a nonprofit organization formed by global computing leaders who 
support the Globus Toolkit, the de-facto standard for open source grid computing infrastructure.

"Comparing traditional grids with high-performance computing" looks at network topologies, 
including specialized network hardware and mesh structures, traditionally used in an HPC 
environment that are being employed in grids, and how commodity systems are replacing the need 
for networking and infrastructure requirements.

"Grid computing -- moving to a standardized platform" discusses how simplifying your 
deployment environment can make your grid easier to manage and develop.

"Grid in action: Managing the resource managers" looks at resource management and how it's used 
to distribute and manage workload in a grid.

"Building a grid using Web services standards" builds an entire resource-sharing grid for storing 



movies based on the principles of the Web services standards in six parts. 

"You've got grid" demonstrates how easy it is to build a grid using existing tools and environments 
by building a work distribution system based on email. 

Need a primer? See developerWorks' "New to grid computing."

Find more grid resources in "Recommended reading list for grid developers."

Browse all of the Grid computing content on developerWorks.

Visit the developerWorks Grid computing zone for information to help you develop with grid 
technologies.

Stay current with developerWorks technical events and webcasts.

Visit Safari Books Online for a wealth of resources for grid computing technologies.

developerWorks podcasts include interesting interviews and discussions for software developers.

Get products and technologies
Ganglia is an open source project providing a free scalable distributed monitoring system for 
high-performance computing systems, such as clusters and grids.

Innovate your next open source development project with IBM trial software, available for 
download or on DVD.

Discuss
Check out the Grid computing forums.

Get involved in the developerWorks community by participating in developerWorks blogs.

About the authors

David Medinets is an independent software consultant specializing in Java technology, SQL, and XML. 
In 1999, he designed and coded most of ToysRs.com. Since then, he has been involved in a variety of 
startups and established companies in many industries. For Cordiem, a versioned airline parts database 
was designed and created. For WWRE, an XML validation and processing engine was architected and 
developed. He also has written three books and several articles covering technical topics.

David A. Cafaro is currently employed at Georgetown University's Advanced Research Computing 
(ARC) group, where he supports computational research needs through the use of Linux and open 
source technologies and is a Red Hat Certified Engineer. In addition, he sits on the Program Committee 
for LinuxWorld Expo and Summit ,where he helps develop track content and technology focus. He has
worked as a security analyst at Tresys Technology with a focus on SELinux policy work. He is active in 
the open source and Linux communities as a member of the Tux.org Board of Directors.




